Il Workshop de Tecnologias de Redes do PoP-BA

Mini-curso: Tratamento de Incidentes de Segurança com o TRAIRA

www.pop-ba.rnp.br/wtr

Minicurso Tratamento de Incidentes de Incidentes de Segurança com o TRAIRA

II Workshop de Tecnologias de Redes do POP-BA Ponto de Presença da RNP na Bahia

Italo Valcy <italo@pop-ba.rnp.br>

19 e 20 de setembro de 2011

Licença de uso e atribuição

Todo o material aqui disponível pode, posteriormente, ser utilizado sobre os termos da:

Creative Commons License: Atribuição - Uso não comercial - Permanência da Licença

http://creativecommons.org/licenses/by-nc-sa/3.0/

CERT.Bahia :: Grupo de Resposta a Incidentes de Segurança – Bahia/Brasil

 $OP_B\Lambda$

Sobre o CERT.Bahia

 CSIRT (Grupo de Resposta a Incidentes de Segurança)

Missão:

Auxiliar as instituições conectadas ao POP-BA/RNP na prevenção, detecção e tratamento dos incidentes de segurança, além de criar e disseminar boas práticas para uso e administração seguros das Tecnologias de Informação e Comunicação (TIC).

Quem somos?

- Coordenação Técnica/Acadêmica
 - Luiz Claudio Mendonça (CPD/UFBA)
 - Prof. Luciano Barreto (DCC/UFBA)
 - Jerônimo Aguiar (CPD/UFBA)

Operação

- Italo Valcy
- Thiago Bomfim
- Rafael Gomes

CERT 🛁 🐼 RNP 🔁

Estatísticas do CERT.Bahia

De Jan/2010 à Jun/2011

Tipo de incidente	Qtd. Tickets
Host possivelmente infectado com Virus/Worm	1762
Envio de Spam	79
Tentativas de obter acesso não autorizado a sistemas ou dados	75
Violação de copyright	43
Outros	20
Total	1979
POP-t	
CERT Bobia	

Como o CERT.Bahia pode ajudar?

- Sistema de controle de chamados
 https://suporte.pop-ba.rnp.br
- Palestras e treinamentos
- Software de tratamento de incidentes (TRAIRA)

P0P-BA

- Detecção e armazenamento de NATs
- Detecção da máquina que gerou o incidente
- Bloqueio da máquina para tratamento futuro

 $2_B\Lambda$

Eventos e Incidentes de Segurança

- Segundo [Scarfone et al. 2008] um evento é qualquer ocorrência observável em um sistema ou na rede
 - Ex: usuário que inicia uma sessão SMTP, servidor web que recebe requisição HTTP, etc.
- Já um evento adverso é aquele que tem consequência negativa para a instituição
 - Ex: flooding de pacotes na rede, uso não autorizado de sistemas, etc.
- Consideraremos apenas eventos adversos relacionados à segurança do software dos computadores

Eventos e Incidentes de Segurança

- Segundo [CERT.br 2006] um incidente de segurança é um evento adverso, confirmado ou sob suspeita, relacionado à segurança de sistemas de computação ou de redes de computadores
- Alguns exemplos:
 - Negação de Serviço
 - Código Malicioso
 - Acesso não autorizado
 - Uso inapropriado (violação de direitos autorais)

15/02

Eventos e Incidentes de Segurança

- Genericamente, [Scarfone et al. 2008] define um *incidente de segurança* como violação, ou suspeita de violação, de:
 - política de segurança da informação
 - política de uso aceitável
 - padrão de práticas de segurança de uma instituição
- Mais informações sobre esses documentos:
 - [CERT.br 2006]

Notificações de Incidentes de Segurança

- Principais causas de incidentes:
 - Ataques automatizados feitos por programas maliciosos (e.g. *bot* ou *worm*)
 - Pessoas mal intencionadas, usando ou não ferramentas automatizadas
- Em ambos os casos é importante alertar o responsável pelo sistema, organização ou rede em questão:
 - Notificações de Incidentes de Segurança
- Grande parte das notificações são enviadas pelos CSIRTs (Grupos de Resposta a Incidentes de Segurança)

- Dados essenciais a serem incluídos em uma notificação:
 - logs completos que evidenciem o incidente
 - data, horário e *timezone* (fuso horário) dos logs
 - endereço de origem do ataque, incluindo IP e porta da conexão

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Tratamento de Incidentes de Segurança

 Ciclo de vida da resposta a incidentes [Scarfone et. al. 2008]:

Tratamento de Incidentes de Segurança

Preparação

- Fase inicial que envolve o estabelecimento de um CSIRT, aquisição de ferramentas, etc.
- Medidas essenciais:
 - Atualização dos SO's e aplicações (anti-vírus, patches, etc.);
 - Garantir o registro das atividades dos usuários (logs dos sistemas);
 - Armazenamento seguro dos logs dos sistemas;

Tratamento de Incidentes de Segurança

Detecção e Análise

- Nesta etapa deve-se detectar ou identificar de fato a existência de um incidente
- Principais atividades:
 - Recebimento e validação da notificação, extração dos principais dados sobre o Incidente
 - Verificação nas bases de IDS/IPS, anti-vírus ou logs do sistema

 Consulta na base de conhecimento sobre os incidentes reportados no passado

Tratamento de Incidentes de Segurança

Contenção, Mitigação e Recuperação

- Assim que o incidente é detectado e analisado, deve-se iniciar mecanismos de contenção para evitar que ele se propague ou afete outros recursos da rede
- Inicia-se então o trabalho para mitigação e recuperação dos sistemas afetados.
 - Importante: política de backup

Tratamento de Incidentes de Segurança

Ações Pós-Incidente

- Esta etapa consiste em avaliar o processo de tratamento de incidentes e verificar a eficácia das soluções adotadas.
- Discutir as lições aprendidas com o CSIRT
- Resposta à notificação enviada

 $2_B\Lambda$

Importância do Tratamento e Resposta a Incidentes

- Lentidão, leniência no tratamento do incidente, bem como a reincidência podem gerar sanções severas e indesejáveis
 - Ex: bloqueio de acesso, recusa de e-mails, etc
- Assim, é essencial que cada incidente seja TRATADO e RESPONDIDO
- Para entidades da Administração Pública Federal:
 - Norma Complementar nº 03/IN01/DSIC/GSIPR (PSI)
 - Norma Complementar nº 05/IN01/DSIC/GSIPR (ETIR)
 - Norma Complementar nº 08/IN01/DSIC/GSIPR (IR)
 - Mais: http://dsic.planalto.gov.br/legislacaodsic/53

Principais Dificuldades

- Cada uma daquelas fases requer ações específicas de mitigação ou controle.
- Para incidentes que são gerados por uma instituição, alguns fatores podem dificultar seu tratamento, exemplo:
 - Tradução de Endereços de Rede (NAT)
 - Configuração dinâmica de rede nos hosts (DHCP)
 - Análise dos registros do sistema (logs)

0

 Quantidade de notificações versus atribuições do CSIRT

Principais Dificuldades

Antes de continuar...

Estamos supondo o seguinte cenário de rede (bastante comum nas instituições):

Principais Dificuldades – NAT

Network Address Translation (NAT)

Permiti que, com um único IP roteável, ou um pequeno conjunto deles, vários hosts (RFC 1918) possam trafegar na Internet

Tipos:

- NAPT (Network Address and Port Translation)
- SNAT (Source NAT)
- DNAT (Destination NAT)

Principais Dificuldades – NAT

Network Address Translation (NAT)

Em alguns casos, a porta de origem original precisa ser alterada:

Principais Dificuldades – NAT

Network Address Translation (NAT)

 Desvantagem: dificuldade em determinar, com precisão, o endereço IP interno mapeado no endereço externo

Suporte à *logging* nos dispositivos de NAT

Busca nos logs

Principais Dificuldades – DHCP

2_BA

CERT 🜙 🔊 RNP 🐺 🎇

Dynamic Host Configuration Protocol (DHCP)

- Configuração automática de parâmetros de rede nos clientes. Principais utilizações:
 - Provedores de acesso (endereços temporários)
 - Configuração automática de máquinas na rede interna (RFC 1918)
- Um host pode ter dois ou mais endereços IP por dia, semana ou mês (*lease time*)

Principais Dificuldades – DHCP

Dynamic Host Configuration Protocol (DHCP)

- Desvantagem: Mapeamento IP-host não garantido
 - Opção: utilizar os endereços MAC (Media Access Control) como identificador "único" dos hosts.

 $OP - B\Delta$

CERT 🜙 🔊 RNP 🕂 🎇

Principais Dificuldades – LOGs

Registros do Sistema (Logs)

- Um *log* é um registro dos eventos que ocorrem nos sistemas ou na rede de uma organização
- Os logs são um recurso essencial para os processos de auditória dos sistemas. Não obstante, dado seu volume e variedade, necessita-se de políticas de gerenciamento dos logs:

 Processo que envolve a geração, transmissão, armazenamento, análise e descarte dos logs

Principais Dificuldades – LOGs

Registros do Sistema (Logs)

- Para eficácia no tratamento de incidentes, deve-se certificar-se sobre a configuração de logging dos sistemas ainda na fase de preparação.
- Já na fase de detecção, deve-se, por exemplo: buscar nos logs do dispositivo de NAT por uma ocorrência do IP, porta de origem, data e hora, que estejam em conformidade com aqueles enviados na notificação.

Estado da arte

SCARFONE, K.; GRANCE, T.; MASONE, K. Computer Security Incident Handling Guide.

- Fornece um guia completo para o tratamento de incidentes de segurança, direcionado a times de segurança novos e já estabelecidos.
- Defini as diretivas necessárias a um CSIRT para Resposta a Incidentes de Segurança

Estado da arte

KAISER, J. et al. Automated resolving of security incidents as a key mechanism to fight massive infections of malicious software.

- Os autores propõe um sistema onde o próprio usuário poderia tratar incidentes que envolvem seus hosts
 - PRISM (Portal for Reporting Incidents and Solution Management)
- Notificações internas no formato IDMEF
- Não trata de questões como o NAT/DHCP

FARNHAM, G. Cisco Security Agent and Incident Handling.

- Sistema proprietário da Cisco baseado em HIPS, onde cada host da rede deve ter um agente instalado responsável por aplicar as políticas de segurança naquele host
- Desvantagens: custo de implantação e adequação à ambientes heterogêneos

Estado da arte

Ceron, J. et. al. (2009). O processo de tratamento de incidentes de segurança da UFRGS.

- Apresenta uma visão geral sobre o processo de tratamento de incidentes usado na UFRGS
- Também baseia-se nas etapas definidas em [Scarfone et. al. 2008], porém as etapas são executadas de forma manual
- O artigo não fala como o mapeamento de IP externo e host foi resolvido

 $\mathcal{P}-\mathcal{B}\Lambda$

A maioria dos CSIRTs usa sistemas de *helpdesk* (sistemas de chamados), para gerenciar os incidentes de segurança:

- Request Tracker (RT)
- Open Source Ticket Request System (OTRS)
- ► RT + RTIR
- Customizações das ferramentas

CERT 🜙 🔊 RNP 📿 💥

TRAIRA

- Software desenvolvido em Perl, como extensão do RT (Request Tracker), para tratamento automatizado dos incidentes de segurança
- Atua em todas as fases do processo de tratamento de incidentes:
- Automatiza o procedimento de detecção, identificação e isolamento da máquina geradora do incidente.

TRAIRA – Fluxo de execução

- 1.Submissão de notificações de incidentes ao TRAIRA
- 2.TRAIRA roda o parser, para extração de informações importantes (IP, Porta, Data/Hora)
- 3.Busca nos logs do NAT
- 4.Busca no L2M
- 5.Notificação ao helpdesk/operação
- 6.Resposta à entidade que notificou o incidente

- Parser: é o módulo responsável pelo recebimento da notificação e pela extração das informações essenciais ao tratamento do incidente: endereço IP e porta de origem, data e horário.
- O Parser a ser usado em uma notificação é definido pelo From e Subject da notificação

Vamos a um exemplo...

TRAIRA::Parser

Parser para notificações enviadas pelo CERT.Bahia

From	incidentes@pop-ba.rnp.br
Subject	Aviso de deteccao de Virus/Worm com origem em [0-9.]{7,15} \(InstituicaoTeste\)
Código do <i>parser</i>	<pre>my \$IP = '[0-9.]{7,15}'; my \$DATE = '[0-9.]{10}'; my \$TIME = '[0-9:]{8}'; my \$PORT = '[0-9]+'; if (\$line = ^ /^53164 \ (\$IP) \ (\$DATE) (\$TIME) srcport (\$PORT)\b.*\$/) { my (\$date, \$time) = \$self->AdjustTimezone(\$2, \$3, '-0300'); return (\$date, \$time, \$1, \$4); } return undef;</pre>
	POP-BA

TRAIRA::Parser

Resultado da execução do módulo Traira::Parser sobre a notificação da Listagem

#	Data	Hora	IP externo	Porta externa
1	2010-04-01	01:50:20	200.128.99.1	51774
2	2010-04-01	13:38:11	200.128.99.1	59441
3	2010-04-01	13:48:00	200.128.99.1	59441
4	2010-04-01	16:10:30	200.128.99.1	24475

 $OP - B\Delta$

CERT 🜙 🔊 RNP 📿 🧱

- O NAT dificulta a identificação precisa do host que provocou um incidente de segurança
- O módulo NAT Mapping do TRAIRA, faz o mapeamento entre o IP externo e IP interno
- Dificuldades desse mapeamento:
 - Diversidade de dispositivos NAT (logs diferentes)
 - Volume de dados a serem processados
 - Na UFBA são mais de 7 milhões de registros de traduções NAT por dia (média de Nov/2010)
 - Correspondência temporal

TRAIRA::NATMapping

Exemplos de logs de traduções NAT no firewall ASA da Cisco

1	Apr	1 01:50:54 172.16.254.1 %ASA-0-305012: Teardown dynamic UDP translation from	
		int_in:10.1.0.8/51386 to int_out:200.128.99.1/51774 duration 0:00:30	
2	Apr	1 13:39:56 172.16.254.1 %ASA-0-305012: Teardown dynamic TCP translation from	
		int_in:192.168.0.37/60523 to int_out:200.128.99.1/59441 duration 0:02:30	
3	Apr	1 13:50:57 172.16.254.1 %ASA-0-305012: Teardown dynamic TCP translation from	
		int_in:10.2.0.44/50071 to int_out:200.128.99.1/59441 duration 0:03:00	
4	Apr	1 16:12:28 172.16.254.1 %ASA-0-305012: Teardown dynamic UDP translation from	
		int_in:10.1.10.9/60818 to int_out:200.128.99.1/24475 duration 0:02:21	
		POP-BA	
			5

TRAIRA::NATMapping

Resultado da execução do módulo Traira::Parser sobre a notificação da Listagem

#	Data	Hora	IP externo	Porta externa
1	2010-04-01	01:50:20	200.128.99.1	51774
2	2010-04-01	13:38:11	200.128.99.1	59441
3	2010-04-01	13:48:00	200.128.99.1	59441
4	2010-04-01	16:10:30	200.128.99.1	24475

Exemplos de logs de traduções NAT no firewall ASA da Cisco

1	Apr	1 01:50:54 172.16.254.1 %ASA-0-305012: Teardown dynamic UDP translation from	
		int_in:10.1.0.8/51386 to int_out:200.128.99.1/51774 duration 0:00:30	
2	Apr	1 13:39:56 172.16.254.1 %ASA-0-305012: Teardown dynamic TCP translation from	
		int_in:192.168.0.37/60523 to int_out:200.128.99.1/59441 duration 0:02:30	
3	Apr	1 13:50:57 172.16.254.1 %ASA-0-305012: Teardown dynamic TCP translation from	
		int_in:10.2.0.44/50071 to int_out:200.128.99.1/59441 duration 0:03:00	
4	Apr	1 16:12:28 172.16.254.1 %ASA-0-305012: Teardown dynamic UDP translation from	
		int_in:10.1.10.9/60818 to int_out:200.128.99.1/24475 duration 0:02:21	
			-4.

TRAIRA::NATMapping

Configuração:

- Segmento de rede
- Driver de NATMapping (iptables / asa cisco, etc)
- Arquivo de log

Exemplo:

200.128.99.0/24Traira::NATMapping::asa_cisco/var/log/local4-%Y%m%d.log200.128.196.0/23Traira::NATMapping::iptables/var/log/nfct-snatlog-%Y-%m-%d.200.128.197.0/28Traira::NATMapping::asa_cisco/var/log/local4-%Y%m%d.log	
200.128.196.0/23 Traira::NATMapping::iptables /var/log/nfct-snatlog-%Y-%m-%d. 200.128.197.0/28 Traira::NATMapping::asa_cisco /var/log/local4-%Y%m%d.log	
200.128.197.0/28 Traira::NATMapping::asa_cisco /var/log/local4-%Y%m%d.log	log
200.128.199.0/24 Traira::NATMapping::none -	

TRAIRA::NATMapping

Resultado da execução do módulo Traira::Parser sobre a notificação da Listagem

#	Data	Hora	IP externo	Porta externa
1	2010-04-01	01:50:20	200.128.99.1	51774
2	2010-04-01	13:38:11	200.128.99.1	59441
3	2010-04-01	13:48:00	200.128.99.1	59441
4	2010-04-01	16:10:30	200.128.99.1	24475

Resultado da execução do módulo Traira::NATMapping sobre os incidentes

soore os menaemes							
#	Data	Hora	IP interno				
1	2010-04-01	01:50:20	10.1.0.8				
2	2010-04-01	13:38:11	192.168.0.37				
3	2010-04-01	13:48:00	10.2.0.44				
4	2010-04-01	16:10:30	10.1.10.9				

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

TRAIRA::IP2MAC

- No entanto...
 A tabela ARP é dinâmica
- Consequência: precisamos de um mecanismo / software que armazene o histórico da tabela ARP
- No TRAIRA, utiliza-se o L2M como base de consulta para o histórico da tabela ARP

TRAIRA::IP2MAC (L2M)

L2M :: Layer 2 Manager

- Software desenvolvido pela UFBA e pelo CERT.Bahia para gerenciamento de recursos em camada 2 (enlace).
- O L2M permite, via interface web, uma série de consultas para um host (por IP ou MAC), por exemplo, horário de entrada e saída
- Permite saber quantas máquinas estão acessando a rede nesse momento, nos últimos 15 dias, etc.

TRAIRA::IP2MAC

- Assim, o módulo IP2MAC recebe uma lista de IPs internos, data e hora de acesso, consulta o L2M e acrescenta o MAC e VLAN de cada tupla;
- Usando os exemplos anteriores, temos:

#	Data	Hora	IP interno	MAC	VLAN
1	2010-04-01	01:50:20	10.1.0.8	00:16:3e:ef:dc:6b	Rede_Lab1
2	2010-04-01	13:38:11	192.168.0.37	00:16:3e:ad:1c:6e	Rede_InstA
3	2010-04-01	13:48:00	10.2.0.44	00:16:3e:bb:2a:3b	Rede_Wireless
4	2010-04-01	16:10:30	10.1.10.9	00:16:3e:fa:ca:1a	Rede_Lab2

TRAIRA::Containment

- Uma vez que o host é detectado, o TRAIRA pode realizar a contenção daquele host para evitar que o mesmo continue propagando atividade maliciosa enquanto não é tratado por uma equipe de campo.
- Listamos três possibilidades de contenção:

- Bloqueio do host no roteador daquela VLAN
- Bloqueio do host no switch gerenciável mais próximo
- Mover o host para VLAN de guarentena

TRAIRA::PostDetection

Exemplo de e-mail enviado à equipe de helpdesk para bloqueio/desinfecção do host

Subject: Solicitacao de bloqueio/desinfeccao de maquina com virus/worm 1 From: Instituicao Teste CSIRT < security@instituicaoteste.edu.br> 2 To: Helpdesk Instituicao Teste <helpdesk@instituicaoteste.edu.br> 3 $\mathbf{4}$ 5 Prezados, 6 7 Segue abaixo uma relacao <IP | MAC | VLAN> das maquinas detectadas como possivelmente comprometidas com virus/worm. Favor realizar o tratamento 8 9 das maquinas (ex: anti-virus, etc.). 10 11 10.1.0.8 | 00:16:3e:ef:dc:6b | Rede_Lab1 12 13 Atenciosamente . 14 15 TRAIRA :: Tratamento de Incidentes de Rede Automatizado. Instituicao Teste CSIRT 16

Estatísticas do TRAIRA

- Um recurso fundamental aos CSIRTs é as estatísticas: elas ajudam os CSIRTs a detectar tendências, prever futuros ataques em grande escala, direcionar atividades, eficácia do tratamento, dentre outros.
- A implementação atual do TRAIRA fornece os seguintes gráficos:
 - Gráfico de incidentes por VLAN
 - Quantidade de incidentes por dia
 - MACs reincidentes

Requisitos de implantação

- Registro remoto dos eventos de tradução de NAT (SNAT)
- Histórico sobre a associação entre endereços IP e MAC dos hosts
- Request Tracker (RT)
- Banco de dados

Integração com RT

70P_BA

CERT 🜙 🔊 RNP 🕂 🎇

- O Request Tracker (RT) é um sistema de chamados, de distribuição livre, bastante usado como ferramenta de apoio à central de serviços das instituições
 - Interface web / E-mail
 - Tíquetes / Filas / Ações / etc.
 - Extensões
- O TRAIRA requer um ambiente funcional do RT, mas não exclusivo*

* dependo do cenário usado, pode ser mais seguro manter uma instalação isolada para o TRAIRA

Integração com RT

Configurações:

- FILA para incidentes de segurança
- Configurações do mapeamento NAT
- Timezone do sistema
- Mapeamento IP -> MAC (parâmetros do L2M)
- Registrar os parsers
- Habilitar/Desabilitar contenção automática

Mais informações

- TRAIRA: uma ferramenta para Tratamento de Incidentes de Segurança. Autor: Italo Valcy; In: Trabalho de Graduação DCC/UFBA – Salvador – BA – Brasil. Dezembro de 2010
 - http://homes.dcc.ufba.br/~italo/monografia.pdf
- TRAIRA: Tratamento de Incidentes de Rede Automatizado. Autores: Italo Valcy; Jerônimo Bezerra; In. V Workshop de TI das IFES - Florianópolis - SC -Brasil. Abril de 2011.

http://www.pop-ba.rnp.br/files/traira-v-wtiifes.pdf

CERT 🥖 🔊 RNP 🐺 🐰

Avaliação sobre o TRAIRA

- Cenário atual:
 - Muitos incidentes e poucos recursos de segurança (equipe e ferramentas)
 - Uso extensivo de NAT e DHCP
 - Consequência: pouca resposta a incidentes
- Proposta: automatizar o tratamento a incidentes
 - TRAIRA: detecção, identificação e isolamento da máquina geradora do incidente
- O TRAIRA permite integração com o RTIR para gerenciamento de um incidente de segurança

Avaliação sobre o TRAIRA

- Requisitos de implantação do TRAIRA são simples
- Principal requisito: suporte a logging das traduções SNAT

Próximos passos:

- Piloto com clientes
- Novas funcionalidades
- Integração com RTIR

TRAIRA: instalação e configuração

- Registro remoto dos logs de NAT
 - Verifique seu firewall/roteador
 - Estudo de caso: Netfilter/IPTables
- Histórico do mapeamento IP -> MAC
 - L2M
- ► RT
- Instalação e configuração do TRAIRA

70P_BA

Netfilter/IPTables

- Netfilter é o firewall nativo do Linux, permite filtro de pacotes, tradução de endereços (NAT/NAPT) e outras manipulações de pacotes
- IPTables é uma aplicação cliente para manipular as regras do Netfilter (frontend)
- Bastante usado nas instituições

Problema: O IPTables não faz registro das traduções NAT de forma adequada.

Netfilter/IPTables								
Comandos do IPTables para implementar o cenário de SNAT apresentado anteriormente							te	
 iptables -t nat -A POSTROUTING -o eth3 -s 172.16.0.0/24 -j SNATto-source 192.168.5.253 iptables -t nat -A POSTROUTING -o eth3 -s 10.10.10.0/24 -j SNATto-source 192.168.5.253 								
 Após a execução desses comandos, a chain POSTROUTING da tabela NAT do iptables 							n	
	fica a	ssin	n:	5	20		٨	
	#Regra	Prot.	In	Out	Orig.	Dest.	Ação	
		all	*	eth3	172.16.0.0/24	0.0.0.0/0	SNAT (to:192.168.5.253)	
1 all i olid i olidologia olidologia olidologia 2 all * eth3 10.10.10.0/24 0.0.0.0/0 SNAT (to:192.168.5.253)								78 / 92

Netfilter/IPTables

- Como habilitar o logging das traduções NAT nesse cenário?
- Suposta solução:

1.	iptables -t nat -I POSTROUTING 1 -o eth3 -s 172.16.0.0/24	
	-j LOGlog-prefix 'SNAT '	
2.	iptables -t nat -I POSTROUTING 3 -o eth3 -s 10.10.10.0/24	
	-j LOGlog-prefix 'SNAT '	

`iptables -t nat -L POSTROUTING -n -v`:

#Regra	Prot.	In	Out	Orig.	Dest.	Ação
1	all	*	eth3	172.16.0.0/24	0.0.0.0/0	LOG (prefixo 'SNAT ')
2	all	*	eth3	172.16.0.0/24	0.0.0.0/0	SNAT (to:192.168.5.253)
3	all	*	eth3	10.10.10.0/24	0.0.0.0/0	LOG (prefixo 'SNAT ')
4	all	*	eth3	10.10.10.0/24	0.0.0.0/0	SNAT (to:192.168.5.253)

Netfilter/IPTables

Host A (172.16.0.1)

Host B (10.10.10.1)

nc -p 40000 192.168.5.99

nc -p 40000 192.168.5.99

1/92

Firewall: Log do iptables para conexões do netcat acima

- I
 Nov
 20
 09:47:07
 firewall
 kernel:
 [32385.753454]
 SNAT
 IN=
 OUT=eth3
 SRC=172.16.0.1

 DST=192.168.5.99
 LEN=60
 TOS=0x00
 PREC=0x00
 TTL=63
 ID=52200
 DF
 PROTO=TCP
 SPT=40000
 DPT=80

 WINDOW=5840
 RES=0x00
 SYN
 URGP=0
- 2 Nov 20 09:47:08 firewall kernel: [32386.479462] SNAT IN= OUT=eth 3 SRC=10.10.10.1 DST=192.168.5.99 LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=18925 DF PROTO=TCP SPT=40000 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

Srv01 (192.168.5.99): monitoramento com tcpdump

 09:47:07.615051 IP 192.168.5.253.40000 > 192.168.5.99.80: Flags [S], seq 3428346057, win 5840, options [mss 1460,sackOK,TS val 9478945 ecr 0,nop,wscale 2], length 0
 09:47:07.627116 IP 192.168.5.253.40000 > 192.168.5.99.80: Flags [.], ack 128236544, win 1460, options [nop,nop,TS val 9478948 ecr 46727625], length 0
 09:47:08.439314 IP 192.168.5.253.1024 > 192.168.5.99.80: Flags [S], seq 2237520910, win 5840, options [mss 1460,sackOK,TS val 9475555 ecr 0,nop,wscale 2], length 0
 09:47:08.445493 IP 192.168.5.253.1024 > 192.168.5.99.80: Flags [.], ack 122234339, win 1460, options [nop,nop,TS val 9475555 ecr 46727831], length 0
 ...

DECT-SNATLOG Most A (172.16.0.1) Inc -p 40000 192.168.5.99 Mc -p 40000 192.168.5.99 Inc -p 40000 192.168.5.99 **Firewall: Log do NFCT-SNATLOG para conexões do netcat acima** Nov 20 09:49:17 firewall nfct-snatlog: [SNAT_LOG] proto=tcp o-src=172.16.0.1 o-spt=40000 t-src=192.168.5.253 t-spt=40000 duration=130s Nov 20 09:49:18 firewall nfct-snatlog: [SNAT_LOG] proto=tcp o-src=10.10.10.1 o-spt=40000 t-src=192.168.5.253 t-spt=1024 duration=130s

Srv01 (192.168.5.99): monitoramento com tcpdump

1	09:47:07.615051 IP 192.168.5.253.40000 > 192.168.5.99.80: Flags [S], seq 3428346057, win
	5840, options [mss 1460, sackOK, TS val 9478945 ecr 0, nop, wscale 2], length 0
2	09:47:07.627116 IP 192.168.5.253.40000 > 192.168.5.99.80: Flags [.], ack 128236544, win 1460,
	options [nop, nop, TS val 9478948 eer 46727625], length 0
3	09:47:08.439314 IP 192.168.5.253.1024 > 192.168.5.99.80: Flags [S], seq 2237520910, win 5840,
	options [mss 1460, sackOK, TS val 9475555 ecr 0, nop, wscale 2], length 0
4	09:47:08.445493 IP 192.168.5.253.1024 > 192.168.5.99.80: Flags [.], ack 122234339, win 1460,
	options [nop, nop, TS val 9475555 ecr 46727831], length 0
5	10
1	13

Análise de desempenho

- Viabilidade de uso do NFCT-SNATLOG
- Vantagens no logging remoto
- Desvantagem no uso de muitas máquinas por IP de NAT

NFCT-SNATLOG

Prática: Instalar o NFCT-SNATLOG na máquina virtual do Firewall e configurar o envio dos logs para servidor de gerencia.

L2M :: Mapeamento IP -> MAC

2_P

CERT 🜙 🔊 RNP 🐺 🧱

- Software desenvolvido pela UFBA e pelo CERT.Bahia para atuar no gerenciamento da camada de enlace (Layer 2)
 - Armazena um histórico sobre a tabela ARP dos roteadores
 - Atua no bloqueio de MAC's nos roteares
- Interface web, desenvolvida em PHP
- Disponível para download (GPL):
 - http://www.pop-ba.rnp.br/files/sw/l2m.tar.gz

L2M :: Mapeamento IP -> MAC

							HOME ETA			
Statistics by VLAN	1							Stats by VLAN		
VLAN Name	 Network 	* W/	ACs in use 🔹	Tota	of MACs* +			Query by MAC/IP		
Backbone Po PBA	200.143.252.248/29	4	(+ details)	4	(+ details)			List of MAD/IP by V	AN	
Backbone RNPv4	200.143.253.8/30	0	(+ details)	0	(+ details)					
DMZ-Externa	200.128.0.0/27	4	(+ details)	4	(+ details)					
DMZ-Interna	10.0.0.0/24	3	(+ details)	3	(+ details)					
fapex	200.128.12.32/30	1	(<u>+ details</u>)	1	(+ details)					
HP-Dionaea	200.128.0.32/27	1	(+ details)	1	(+ details)					
NovoBkbRNPw4	200.143.255.180/30	1	(<u>+ details</u>)	1	(+ details)					
pop-inside	10.1.0.0/24	8	(+ details)	37	(+ details)					
pop-outside	200.128.6.0/24	8	(+ details)	9	(+ details)					
PTT-BL-IB	189.45.241.56/30	1	(+ details)	1	(+ details)					
PTTBAix4	200.219.145.0/24	13	(<u>+ details</u>)	13	(+ details)					
PTBASte	200.128.0.80/28	3	(+ details)	3	(+ details)					
RedeDRG	200.128.01.128/20	1	(+ details)	1	(+ details)					
Redeulsp.Art	200.128.0.96/29	4	(+ details)	4	(+ details)					
Remessa	200.120.0.120/20	#2 0	(+ details)	92	(+ details)					
Santaisabei Santidoras PNP	200.128.04.04020	11	(+ details)	11	(+ details)					
UEES	200 128 12 36/30	1	(+ details)	1	(+ details)					
UESB	200 128 12 104/30	1	(+ details)	2	(+ details)					
UESC	200.128.12.28/30	1	(+ details)	1	(+ details)					
ufba-outside	200.128.60.0/24	7	(+ details)	7	(+ details)					
UF8AP2P	200.128.12.20/30	1	(+ details)	1	(+ details)					
UFRB	200.128.12.64/30	1	(<u>+ details</u>)	1	(+ details)					
unifacs	200.128.79.0/24	19	(+ details)	23	(+ details)					
Unknow		1	(+ details)	2	(+ details)					
TOTAL		137		173						
A Last #5 days										
Last re supe										ų
				(c) 2008. All	Rights Resenred. <u>Les meruis</u> design	by <u>Free GBB Templaks</u> .				
										_

L2M :: Mapeamento IP -> MAC

Pratica: Configurar o L2M na máquina Gerencia e habilitar a consulta da tabela ARP do Firewall.

RT	:: Request Tracke	er
RT para traira-teste intranet.pop-ba.mp.br		Não registrado.
	Entrar 3.8.8 Nome de usaário Senha:	Þ
	.∞ « RT 3.8.8 Direitos Res Para pedir informações sobre suporte, treinamento, desenvolvimento personalizado ou licenciam	Servados 1996-2009 Best Practical Solutions, LLC. Distribuido sob a versão 2 da GNU GPL, nento, por favor, contacte sales@bestpractical.com.
		92/92

RT :: Request Tracker

Pratica: instalar o RT na máquina gerência e configurar a abertura de chamados via e-mail.

RT :: TRAIRA

2_P

- Desenvolvido em Perl (linguagem do RT)
- Distribuído sobre licença GPL
- Disponível para download
 http://www.pop-ba.rnp.br/files/sw/rt-traira.tar.gz
- Documentação:
 http://certbahia.pop-ba.rnp.br/traira

CERT 🥖 🔊 RNP 🐺 🐰

Referências

- Scarfone, K., Grance, T., and Masone, K. (2008). Computer Security Incident Handling Guide. NIST Special Publication, 800–61;
- CERT.br (2006). Cartilha de Segurança para Internet. Parte VII: Incidentes de Segurança e Uso Abusivo da Rede;
- CERT/CC (2010). Computer Segurity Incident Response Team FAQ.
- Ceron, J. et. al. (2009). O processo de tratamento de incidentes de segurança da UFRGS. In: IV Workshop de TI das IFES, 2009.

II WTR do POP-BA II Workshop de Tecnologias de Redes Ponto de Presença da RNP na Bahia Instrutor: Italo Valcy Monitor: Thiago Bomfim

Material necessário para as práticas:

- Virtualbox (versão 4.1.0 ou superior)
- Máquinas virtuais disponibilizadas pelo instrutor (firewall.ova, Gerencia.ova, HostA.ova e HostB.ova)

Importe cada uma dessas máquinas no Virtualbox (*Arquivo > Importar Appliance*), mas não as inicie ainda (veja a configuração abaixo antes).

Antes de iniciar as máquinas, precisaremos alterar o endereço MAC da máquina *Firewall* pois ela será conectada diretamente à interface de rede do hospedeiro e, se não alterarmos, teremos problemas de MACs duplicados na rede. Para alterar o MAC da máquina Firewall clique com o botão direito do mouse sobre a máquina e escolha a opção "Configurações"; em seguida escolha as opções de "Rede" e no "Adaptador 1" clique em "Avançado (D)" e clique no botão de Refresh ao lado do MAC. Veja na figura abaixo:

📃 Geral	Rede
🔝 Sistema	
🧾 Monitor	Adaptador 1 Adaptador 2 Adaptador 3 Adaptador 4
Armazenamento	☑ Habilitar Placa de R <u>e</u> de
🖗 Áudio	Conectado a: Placa em modo Bridge
P Rede	
ᅇ Portas Seriais	Nome: Wian1
🖉 USB	Vançado (D)
🗐 Pastas Compartilhadas	Tipo de Placa: Intel PRO/1000 MT Desktop (82540EM)
	Promiscuous Mode: Deny
	Endereço <u>M</u> AC: 080027987C39
	✓ Cabo conectado
	Redirecionamento de <u>P</u> ortas
	Mostra ou oculta as opções adicionais para placas de rede.
Ajuda (<u>H</u>)	<u>C</u> ancelar <u>O</u> K

Prática 01: Instalação e Configuração do NFCT-SNATLOG no Firewall

Este laboratório visa apresentar aos alunos os passos para configuração do NFCT-SNATLOG, permitindo a geração dos logs de traduções NAT realizadas pelo Netfilter/IPTables.

Parte 01: Instalação do NFCT-SNATLOG

Os passos abaixo devem ser executados na máquina Firewall, a menos que outra máquina seja explicitamente citada.

Faça o download do pacote do nfct-snatlog (já foi feito o download na pasta /root): wget http://www.pop-ba.rnp.br/files/sw/nfct-snatlog.tgz

```
Instale as dependências (já estão instaladas):
apt-get install make gcc libnetfilter-conntrack-dev
```

Compilação do software:

```
tar -xzf nfct-snatlog.tgz
cd nfct-snatlog
make
make install
```

Com os comandos acima, você terá instalado o NFCT-SNATLOG em /usr/sbin/nfct-snatlog. Para executá-lo precisaremos carregar alguns módulos do kernel:

```
modprobe nf_conntrack
modprobe nf_conntrack_ipv4
modprobe nf_conntrack_netlink
```

E finalmente carregar o daemon: /usr/sbin/nfct-snatlog --daemon

OBS: a configuração acima é volátil, o que significa que quando a máquina for reiniciada ela será perdida. Para carregar a configuração na inicialização do sistema, você deve criar um script no init.d (ou equivalente), porém essa configuração não será abordado no curso (na máquina virtual essa configuração foi feita no /etc/rc.local apenas para demonstração).

Para testarmos o funcionamento do NFCT-SNATLOG, vamos monitorar os logs no Firewall e realizar uma conexão TCP de uma das máquinas clientes. Para isso, execute o seguinte comando no Firewall:

tail -f /var/log/syslog

(para finalizar a visualização do log, tecle CTRL+C)

Agora, na máquina Host A, execute o seguinte comando: wget http://www.pop-ba.rnp.br/Site/

Volte ao monitoramento do Firewall e verifique a geração dos logs (observe que deve demorar cerca de 120 segundos para a mensagem aparecer – discuta com seus colegas sobre esse atraso)

Parte 02: Envio dos logs para um servidor remoto

Uma configuração importante para garantir segurança e escalabilidade em ambientes desse tipo é a implantação de um servidor de logs remoto. Nessa parte da prática, vamos configurar o Firewall para enviar os logs do NFCT-SNATLOG para o servidor de Gerencia.

Para isso, na máquina Gerencia, precisaremos editar a configuração do syslog-ng. Para isso, edite o

arquivo /etc/syslog-ng/syslog-ng.conf e acrescente as seguintes linhas (elas já existem no final do arquivo para facilitar, então apenas descomente-as):

```
source s_udp { udp(port(514)); };
filter f_nfct-snatlog { facility(local4) and program("nfct-snatlog"); };
destination d_nfct-snatlog { file("/var/log/firewall/nfct-snatlog-${YEAR}${MONTH}${DAY}.log"
group("www-data")); };
log { source(s_udp); filter(f_nfct-snatlog); destination(d_nfct-snatlog); };
```

Em seguida, precisamos criar a pasta que armazenará os logs e setar algumas permissões:

```
mkdir /var/log/firewall
chown root.www-data /var/log/firewall
chmod 750 /var/log/firewall
```

```
Agora precisamos reiniciar o daemon do syslog-ng:
/etc/init.d/syslog-ng restart
```

Na máquina **Firewall**, edite o arquivo /etc/syslog-ng/syslog-ng.conf e acrescente as seguintes linhas (elas já existem no final do arquivo para facilitar, então apenas descomente-as):

```
destination d_logserver { udp("10.0.0.99" port(514)); };
filter f_nfct-snatlog { facility(local4); };
log { source(s_src); filter(f_nfct-snatlog); destination(d_logserver); };
```

```
Em seguida, reinicie o daemon do syslog para carregar
/etc/init.d/syslog-ng restart
```

Para testar a configuração acima, execute um acesso na máquina Host A (comando wget) e monitore o log em Gerencia (/var/log/firewall/nfct-snatlog-XXXXX.log).

OBS: Em um ambiente de produção, é recomendável a configuração do rotacionamento dos logs do Firewall, inclusive comprimindo-os. Essa configuração, no entanto, não será abordada neste minicurso.

Prática 02: Instalação e Configuração do L2M em Gerencia

Este laboratório visa apresentar aos alunos os passos para configuração do L2M na máquina Gerencia para coleta e armazenamento da tabela ARP do Firewall.

Parte 01: Instalação do L2M

Os passos abaixo devem ser executados na máquina Gerencia, a menos que outra máquina seja explicitamente citada.

```
Faça o download do pacote do L2M:
wget http://www.pop-ba.rnp.br/files/sw/l2m.tgz
```

```
Descompacte o tarball na pasta do servidor web:
tar -xzf /root/l2m.tgz -C /var/www/
```

Precisamos criar o banco de dados para o L2M (apenas para ilustração, vamos usar a senha do banco "wtr2011", porém em um ambiente de produção recomenda-se usar uma senha aleatória e forte, por exemplo criada através do utilitário *mkpasswd*). Os passos são os seguintes.

- O primeiro passo é criar o usuário, para isso execute o seguinte comando (ao ser questionado sobre a senha, informe "wtr2011"):

su - postgres -c "createuser l2musr -S -D -R -P"

- O próximo passo é criar o banco de dados sob a propriedade do novo usuário. Para isso, execute o seguinte comando:

su - postgres -c "createdb l2mdb -0 l2musr"

- Finalmente vamos dar permissão total sobre o banco criado para o usuário em questão: su - postgres -c "psql -c \"GRANT ALL PRIVILEGES ON database 12mdb TO 12musr;\""

Agora, edite o arquivo /var/www/l2m/include/config.php e altere os parâmetros do banco de dados:

```
$db_host = 'localhost';
$db_name = 'l2mdb';
$db_user = 'l2musr';
$db_pass = 'wtr2011';
```

O próximo passo é criar as tabelas no banco de dados (ao ser questionado pela senha, informe "wtr2011" – a mesma usada anteriormente):

```
cd /var/www/l2m
psql -U l2musr -d l2mdb -h localhost -f docs/create.pgsql.sql
```

Acesse a interface do L2M e verifique se está funcionando corretamente (faremos a configuração na próxima seção). Para acessar a interface do L2M, utilize o IP do Firewall na interface eth0 (o comando "ifconfig eth0" deve listar tal IP):

http://<IP-Firewall-eth0>/12m/

Precisamos configurar o poller do L2M. O poller é o script que periodicamente realizará as consultas nas tabelas ARP dos roteadores cadastrados e habilitados. Para habilitar o poller do L2M, adicione o script poller.php para execução no CRON, através dos seguintes comandos:

```
cd /var/www/12m/
chown root.root docs/cron.d-12m
chmod +x docs/cron.d-12m
mv docs/cron.d-12m /etc/cron.d/12m
```

Parte 02: Configurando as consultas no L2M

A configuração do L2M que faremos consistirá nos seguintes itens:

- Adicionar os roteadores que monitoraremos
- Adicionar as VLANs
- Configurar os parâmetros para contenção (bloqueio) de hosts

O primeiro passo é configurar os roteadores que iremos monitorar, através da opção *Settings* > *Router Settings* > *Add Router*. Adicionaremos o roteador Firewall, que será consultado via SCRIPT (linux-ssh.sh) e deixaremos ele desabilitado enquanto finalizamos a configuração. Os parâmetros de configuração são:

- Name: firewall
- IP Addr: 10.0.0.254
- Query type: script
- Script path: linux-ssh.sh
- Disabled router: SIM (deixar o roteador desabilitado)

Para que o script linux-ssh.sh funcione corretamente, necessitaremos executar comandos remotamente, usando o protocolo SSH. A configuração do SSH para esse ambiente é um pouco mais complexa que o usual (e.g. autenticação baseada em chave pública, restrição de comandos, etc.) e não será abordada nesse curso. Assim, as máquinas virtuais que você recebeu já estão preparadas para execução do script. Caso deseje entender a configuração, recomendamos a leitura da seguinte referência:

http://www.pop-ba.rnp.br/Site/L2MLinuxScripts

O próximo passo é configurar as VLANs que monitoraremos. Apesar de nosso cenário na prática não possuir VLANs, vamos criar três delas para representar a topologia de rede que idealizamos. Para isso acesse a opção *Settings* > *VLAN Settings* > *Add VLAN*, e crie as VLANs conforme parâmetros a seguir:

- VLAN ID: 100
- VLAN Name: RedeExterna
- Network: < Informar a rede do laboratório (consulte o instrutor)>
- Router: firewall
- VLAN ID: 200
- VLAN Name: RedeDMZ
- Network: 10.0.0/24
- Router: firewall
- VLAN ID: 300
- VLAN Name: RedeLabs
- Network: 172.16.0.0/24
- Router: firewall

Vamos voltar à configuração dos roteadores e habilitar a consulta ao Firewall: *Settings > Router Settings > editar o firewall > desmarcar opção "Disable router"*.

Para testar o funcionamento do script, aguarde o tempo da próxima consulta (a cada 5 minutos) e acesse a tabela de estatísticas para ver os MACs armazenados (*Stats > Stats by VLAN*).

Parte 03: Configurando o bloqueio no L2M

Nessa seção vamos analisar uma configuração básica de contenção (bloqueio) no L2M. O bloqueio será feito em um servidor Linux, usando o firewall nativo Netfilter/IPTables. Nesse curso, alguns detalhes de configuração serão omitidos a fim de agilizar o processo. Outras formas de bloqueio são possíveis, a exemplo do bloqueio via EXPECT, ou até mesmo via SNMP. Caso tenha interesse em testar o bloqueio em outros ambientes, entre em contato com o PoP-BA para desenvolvermos scripts alternativos.

Toda a configuração de chaves SSH e execução de comandos remoto já foi previamente realizada, bastando apenas alterar alguns parâmetros no L2M. Precisaremos editar a configuração do roteador (firewall) e das VLANs.

Acesse *Settings > Router Settings > editar firewall* e configure os seguintes parâmetros:

- Block Script: block-linux-ssh.sh
- Unblock Script: unblock-linux-ssh.sh

Acesse *Settings* > *VLAN Settings* > *editar VLAN 100, 200 e 300,* e configure os seguintes parâmetros:

- VLAN 100
 - Router interface: eth0
 - ACL Name: (deixe em branco)
- VLAN 200
 - Router interface: eth2

- ACL Name: (deixe em branco)
- VLAN 300
 - Router interface: eth1
 - ACL Name: (deixe em branco)

Agora vamos tentar bloquear um host através do formulário em *Containment*. Forneça os dados abaixo:

- MAC Address: 08:00:27:dd:22:04
- VLAN: RedeLabs (VLAN 300)
- Block!

Para testar se o bloqueio teve sucesso (além da mensagem de retorno na interface), vamos acessar a máquina Host A e checar se ela consegue acessar algum recurso na rede:

ping -c 4 10.0.0.99

Agora realize o desbloqueio na mesma tela do L2M e verifique se a máquina volta a ter acesso à rede.

Prática 03: Instalação e Configuração do RT em Gerencia

O RT é usado como base para instalação do TRAIRA. Você pode aproveitar um ambiente existe e apenas adicionar a extensão do TRAIRA ou configurar um novo ambiente dedicado ao tratamento de incidentes de segurança. A vantagem dessa segunda abordagem é que você pode ter um servidor com acesso mais restrito, aumentando a segurança do ambiente.

Nesse mini-curso, o RT já encontra-se instalado e com configurações básicas. Um passo-a-passo para instalação do RT pode ser encontrado no seguinte endereço: http://certbahia.pop-ba.rnp.br/HowToRT

O instrutor fornecerá uma visão geral sobre os passos de configuração.

Acesse a interface do RT e verifique se está funcionando corretamente (faremos a configuração na próxima seção). Para acessar a interface do RT, utilize o IP do Firewall na interface eth0 (o comando "ifconfig eth0" deve listar tal IP), usuário será "wtr2011" e senha "wtr2011": http://<IP-Firewall-eth0>/rt/

Prática 04: Instalação e Configuração do TRAIRA em Gerencia

Esta prática visa mostrar os passos necessários para instalação e configuração do TRAIRA na máquina Gerencia.

Parte 01: Instalação do TRAIRA

Faça o download do pacote do TRAIRA: wget http://www.pop-ba.rnp.br/files/sw/rt-traira.tgz

Descompacte o pacote do TRAIRA no diretório raiz do RT: tar -xzf /root/rt-traira.tgz -C / chown -R root.root /usr/share/request-tracker3.8

Parte 02: Configuração do TRAIRA

Caso o TRAIRA tenha sido instalado corretamente, você terá uma nova opção nos menus do RT, conforme pode ser visto na imagem abaixo.

🗹 Ferramentas	+ ·
0 0 👪	g http://10.1.0.64/rt/Tools/index.html ☆ < C 🕄 Google 🔍 🏠 🦗 <
RT para rt.gerenci	a.wtr-seg.pop-ba.rnp.br Entrou como wtr2011 Preferências Sair
Início	Ferramentas Novo tíquete er General 🗘 Buscar
Busca Simples	Painéis de Indicadores · Offline · Relatórios · TRAIRA
Tíquetes	
Ferramentas Configuração Preferências Aprovação TRAIRA	Painéis de Indicadores Named, shared collection of portlets Offline Criar tiquetes offline Relatórios Vários relatórios do RT Meu Dia Atualização fácil de seus tíquetes abertos
	> ≪ BEST PRACTICAL ™
	» « RT 3.8.8 Direitos Reservados 1996-2009 Best Practical Solutions, LLC.

O TRAIRA estará acessível no menu principal do RT (menu à esquerda) ou através de *Ferramentas* > *TRAIRA*. As configurações necessárias serão listas abaixo.

O primeiro passo é criar um fila que será usada para o tratamento de incidentes. Para isso, acesse o menu Configuração > Filas > Criar e informe as seguintes informações:

- Nome da Fila: Security
- Descrição: Tratamento de Incidentes de Segurança
- Endereço para resposta: security@gerencia.wtr-seg.pop-ba.rnp.br
- Endereço para comentário: security-comment@gerencia.wtr-seg.pop-ba.rnp.br
- Criar

Além de criar a fila, gostaríamos de permitir a criação de chamados via e-mail. Para isso, precisaremos editar o arquivo /etc/aliases e acrescentar o seguinte (remove as entradas anteriores referentes ao alias security caso existam):

security: "| /usr/bin/procmail -a Security -a correspond"
security-comment: "| /usr/bin/procmail -a Security -a comment"

Não esqueça de executar o newalias para gerar os aliases acima: newaliases

Agora definimos os filtros de criação de chamados de incidentes no procmail. Disponibilizamos uma versão básica de filtros do procmail no /root/configs, para ativá-la basta executar: cp /root/configs/procmailrc /etc/procmailrc

Uma vez que a fila foi criada, vamos dar permissão para que qualquer usuário possa criar chamados nessa fila (um controle de acesso mais restritivo pode ser feito no procmail). Para isso, acesse o menu *Configuração > Filas > Segurity > Direitos de Acesso do Grupo,* no grupo "Todos" adicione a permissão "CriarTiquete" (basta selecionar essa opção e clicar em Salvar no rodapé da página).

Em seguida, vamos informar as configurações básicas do TRAIRA, para isso acesse o menu

Ferramentas > *TRAIRA* > *Configuração* e preencha os seguintes campos:

- Nome da Fila: Security
- Tratamento automático: Habilitado
- Mapeamento Net2NAT:
 - Rede: 0.0.0.0/0
 - Disp. NAT: iptables
 - Arq. Log: /var/log/firewall/nfct-snatlog-%Y%m%d.log
 - Add Net2NAT
- IP2MAC Config Consulta IP/MAC:
 - URL de Consulta: http://localhost/l2m/query.php?ip=\$ip&date=\$date&time=\$time
 - Usuario p/ Consulta: (deixar em branco)
 - Senha p/ Consulta: (deixar em branco)
 - Realm p/ Consulta: (deixar em branco)
 - IP2MAC Config Bloqueio/Desbloqueio de MACs:
 - URL de bloqueio: http://localhost/l2m/block.php?mac=\$mac&vlan=\$vlan
 - URL de desbloqueio: http://localhost/l2m/unblock.php?mac=\$mac&vlan=\$vlan
 - Usuario p/ Bloq/Desb: (deixar em branco)
 - Senha p/ Bloq/Desb: (deixar em branco)
 - Realm p/ Bloq/Desb: (deixar em branco)

Com os parâmetros acima, já termos uma configuração funcional do TRAIRA. Vamos agora criar um parser para testarmos as notificações. Para isso, acesse o menu *Ferramentas* > *TRAIRA* > *Parsers* e preencha os seguintes campos em "Criar/Editar/Remover um parser":

- Nome do parser: certbahia-ssh-attack-teste
- From regex: certbahia@pop-ba.rnp.br
- Subject regex: Ataque ssh-brute force com origem em [0-9.]{7,15}
- Código do parser: pode usar o mesmo do exemplo, alterando apenas o número do AS, de 9999 para 53164. O código completo fica assim:

```
my $SPC = '[[:space:]]';
my $IP = '[0-9.]{7,15}';
my $DATE = '[0-9.]{10}';
my $TIME = '[0-9:]{8}';
my $PORT = '[0-9]+';
if ($line =~ /^53164$SPC\|$SPC($IP)$SPC\|$SPC($DATE)$SPC($TIME)${SPC}srcport$SPC($PORT)\b.*$/ ) {
    my ($date, $time) = $self->AdjustTimezone($2, $3, '-0300');
    return ($date, $time, $1, $4);
}
```

return undef;

• Salvar

A fim de testar nossa configuração, vamos gerar algumas tentativas de ataque de força bruta SSH para um host de monitoramento que o instrutor criou. Verifique com o instrutor o endereço IP do sensor. Para realizar o ataque, foi criado um script simples nas máquinas Host A e Host B, o /root/ssh-brute-force.sh. Assim, execute os seguintes comandos em cada uma das máquinas HostA e HostB (simultaneamente):

/root/ssh-brute-force.sh IP-SENSOR /root/user-list /root/pass-list

Peça, então, para o instrutor reportar o incidente de segurança gerado para o TRAIRA que você configurou.

Agora, acesse a interface web do TRAIRA e verifique o tíquete que foi gerado na fila Security.

Habilite o bloqueio automático, através do menu *Ferramentas > TRAIRA > Acoes* e na seção de "Contencao" marque a opção "*Bloquear Host*".

Gere outros incidentes de segurança com os mesmos passos anteriores e peça para o instrutor reportar novamente os incidentes de segurança. Verifique agora se o host foi bloqueado na mensagem do tíquete e também diretamente no firewall (use o comando "iptables -L -n -v" para listar as regras do Netfilter/IPTables).

Boa prática! Em caso de dúvidas, não hesite em consultar o instrutor.